管理资源吧

当前位置:管理资源吧首页>>>meiwen>>>c5>>>学习方法

高一数学公式汇总

  高一数学公式汇总

  三角函数公式

  两角和公式

  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  倍角公式

  tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式

  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

  和差化积

  2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

  某些数列前n项和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

  余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

  弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

  乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

  三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b| -|a|≤a≤|a|

  一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

  根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

  判别式

  b2-4ac=0 注:方程有两个相等的实根

[Ok3w_NextPage]

  b2-4ac>0 注:方程有两个不等的实根

  b2-4ac<0 注:方程没有实根,有共轭复数根

  降幂公式

  (sin^2)x=1-cos2x/2

  (cos^2)x=i=cos2x/2

  万能公式

  令tan(a/2)=t

  sina=2t/(1+t^2)

  cosa=(1-t^2)/(1+t^2)

  tana=2t/(1-t^2)

  某些数列前n项和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理a/sinA=b/sinB=c/sinC=2R 注: 其中R 表示三角形的外接圆半径

  余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角

  弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r

  乘法与因式分a2-b2=(a+b)(a-b)

  a3+b3=(a+b)(a2-ab+b2)

  a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b|

  |a-b|≤|a|+|b|

  |a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b| -|a|≤a≤|a|

  一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

  根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理

  判别式

  b2-4ac=0 注:方程有两个相等的实根

  b2-4ac>0 注:方程有两个不等的实根

  b2-4ac<0 注:方程没有实根,有共轭复数根

  降幂公式

  (sin^2)x=1-cos2x/2

  (cos^2)x=i=cos2x/2

  万能公式

  令tan(a/2)=t

  sina=2t/(1+t^2)

  cosa=(1-t^2)/(1+t^2)

  tana=2t/(1-t^2)

  公式一:

  设α为任意角,终边相同的角的同一三角函数的值相等:

  sin(2kπ+α)=sinα

  cos(2kπ+α)=cosα

  tan(2kπ+α)=tanα

  cot(2kπ+α)=cotα

  公式二:

  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  同角三角函数的基本关系式

  倒数关系:

  tanα ·cotα=1

  sinα ·cscα=1

  cosα ·secα=1

  商的关系:

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  两角和差公式

  两角和与差的三角函数公式

  sin(α+β)=sinαcosβ+cosαsinβ

  sin(α-β)=sinαcosβ-cosαsinβ

  cos(α+β)=cosαcosβ-sinαsinβ

  cos(α-β)=cosαcosβ+sinαsinβ

  tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  二倍角公式

  二倍角的正弦、余弦和正切公式(升幂缩角公式)

[Ok3w_NextPage]

  sin2α=2sinαcosα

  cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

  tan2α=2tanα/[1-tan^2(α)]

  半角公式

  半角的正弦、余弦和正切公式(降幂扩角公式)

  sin^2(α/2)=(1-cosα)/2

  cos^2(α/2)=(1+cosα)/2

  tan^2(α/2)=(1-cosα)/(1+cosα)

  另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)

  万能公式

  sinα=2tan(α/2)/[1+tan^2(α/2)]

  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

  tanα=2tan(α/2)/[1-tan^2(α/2)]

  万能公式推导

  附推导:

  sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,

  (因为cos^2(α)+sin^2(α)=1)

  再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))

  然后用α/2代替α即可。

  同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。

  和差化积公式

  三角函数的和差化积公式

  sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]

  sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]

  cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]

  cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]

  积化和差公式

  三角函数的积化和差公式

  sinα ·cosβ=0.5[sin(α+β)+sin(α-β)]

  cosα ·sinβ=0.5[sin(α+β)-sin(α-β)]

  cosα ·cosβ=0.5[cos(α+β)+cos(α-β)]

  sinα ·sinβ=-0.5[cos(α+β)-cos(α-β)]

  等比数列公式

  如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。

  (1)等比数列的通项公式是:An=A1×q^(n-1)

  若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。

  (2) 任意两项am,an的关系为an=am·q^(n-m)

  (3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

  (4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。

  记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

  性质:

  ①若m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;

  ②在等比数列中,依次每k项之和仍成等比数列.

  “G是a、b的等比中项”“G^2=ab(G≠0)”.

  (5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)或Sn=(a1-an*q)/(1-q)(q≠1)Sn=n*a1 (q=1)

[Ok3w_NextPage]

  在等比数列中,首项A1与公比q都不为零.

  注意:上述公式中A^n表示A的n次方。

  等比数列在生活中也是常常运用的。

  如:银行有一种支付利息的方式---复利。

  即把前一期的利息和本金加在一起算作本金,

  再计算下一期的利息,也就是人们通常说的利滚利。

  按照复利计算本利和的公式:本利和=本金*(1+利率)^存期

  等差数列公式

  等差数列的通项公式为:an=a1+(n-1)d

  或an=am+(n-m)d

  前n项和公式为:Sn=na1+n(n-1)d/2或Sn=(a1+an)n/2

  若m+n=p+q则:存在am+an=ap+aq

  若m+n=2p则:am+an=2ap

  以上n均为正整数

  第n项的值=首项+(项数-1)*公差

  前n项的和=(首项+末项)*项数/2

  公差=后项-前项

  对称数列公式

  对称数列的通项公式:

  对称数列总的项数个数:用字母s表示

  对称数列中项:用字母C表示

  等差对称数列公差:用字母d表示

  等比对称数列公比:用字母q表示

  设,k=(s+1)/2

  一般数列的通项求法

  一般有:

  an=Sn-Sn-1 (n≥2)

  累和法(an-an-1=... an-1 - an-2=... a2-a1=...将以上各项相加可得an)。

  逐商全乘法(对于后一项与前一项商中含有未知数的数列)。

  化归法(将数列变形,使原数列的倒数或与某同一常数的和成等差或等比数列)。

  特别的:

  在等差数列中,总有Sn S2n-Sn S3n-S2n

  2(S2n-Sn)=(S3n-S2n)+Sn

  即三者是等差数列,同样在等比数列中。三者成等比数列

  不动点法(常用于分式的通项递推关系)

  特殊数列的通项的写法

  1,2,3,4,5,6,7,8....... ---------an=n

  1,1/2,1/3,1/4,1/5,1/6,1/7,1/8......-------an=1/n

  2,4,6,8,10,12,14.......-------an=2n

  1,3,5,7,9,11,13,15.....-------an=2n-1

  -1,1,-1,1,-1,1,-1,1......--------an=(-1)^n

  1,-1,1,-1,1,-1,1,-1,1......--------an=(-1)^(n+1)

  1,0,1,0,1,0,1,01,0,1,0,1....------an=[(-1)^(n+1)+1]/2

  1,0,-1,0,1,0,-1,0,1,0,-1,0......-------an=cos(n-1)π/2=sinnπ/2

  9,99,999,9999,99999,......... ------an=(10^n)-1

  1,11,111,1111,11111.......--------an=[(10^n)-1]/9

  1,4,9,16,25,36,49,.......------an=n^2

  1,2,4,8,16,32......--------an=2^(n-1)

  数列前N项和公式的求法

  (一)1.等差数列:

  通项公式an=a1+(n-1)d 首项a1,公差d, an第n项数

  an=ak+(n-k)d ak为第k项数

  若a,A,b构成等差数列 则A=(a+b)/2

  2.等差数列前n项和:

  设等差数列的前n项和为Sn

  即Sn=a1+a2+...+an;

  那么Sn=na1+n(n-1)d/2

  =dn^2(即n的2次方) /2+(a1-d/2)n

  还有以下的求和方法: 1,不完全归纳法 2 累加法3 倒序相加法

[Ok3w_NextPage]

  (二)1.等比数列:

  通项公式an=a1*q^(n-1)(即q的n-1次方) a1为首项,an为第n项

  an=a1*q^(n-1),am=a1*q^(m-1)

  则an/am=q^(n-m)

  (1)an=am*q^(n-m)

  (2)a,G,b 若构成等比中项,则G^2=ab (a,b,G不等于0)

  (3)若m+n=p+q 则am×an=ap×aq

  2.等比数列前n项和

  设a1,a2,a3...an构成等比数列

  前n项和Sn=a1+a2+a3...an

  Sn=a1+a1*q+a1*q^2+....a1*q^(n-2)+a1*q^(n-1)(这个公式虽然是最基本公式,但一部分题目中求前n项和是很难用下面那个公式推导的,这时可能要直接从基本公式推导过去,所以希望这个公式也要理解)

  Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q);

  注: q不等于1;

  Sn=na1 注:q=1

  求和一般有以下5个方法: 1,完全归纳法(即数学归纳法)2 累乘法3 错位相减法 4 倒序求和法5 裂项相消法

meiwen首页 更多meiwen