管理资源吧

当前位置:管理资源吧首页>>>meiwen>>>c5>>>课外知识

初中函数定义与性质

  初中函数定义与性质

  形如y=kx(k为常数,且k不等于0),y就叫做x的正比例函数。

  图象做法:1。带定系数 2。描点 3。连线 图象是一条直线,一定经过坐标轴的原点

  性质:当k>0时,图象经过一,三象限,y随x的增大而增大 当k<0时,图象经过二,四象限,y随x的增大而减小形如 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。 自变量x的取值范围是不等于0的一切实数。

  反比例函数的图像为双曲线。它可以无限地接近坐标轴,但永不相交。

  性质:当k>0时,图象在一,三象限,在每个象限内,y随x的增大而减小,

  当k<0时,图象在二,四象限,在每个象限内,y随x的增大而增大,形如y=kx+b(k为常数,且k不等于0),y就叫做x的正比例函数,正比例函数过原点(0,0),属于一次函数k>0,b>O,则图象过1,2,3象限 k>0,b<0,则图象过1,3,4象限 k<0,b>0,则图象过1,2,4象限k<0,b<0,则图象过2,3,4象限。

  二次函数:y=ax^2+bx+c (a,b,c是常数,且a不等于0)a>0开口向上 a<0开口向下 a,b同号,对称轴在y轴左侧,反之,再y轴右侧|x1-x2|=根号下b^2-4ac除以|a| 与y轴交点为(0,c)b^2-4ac>0,ax^2+bx+c=0有两个不相等的实根 b^2-4ac<0,ax^2+bx+c=0无实根b^2-4ac=0,ax^2+bx+c=0有两个相等的实根 对称轴x=-b/2a 顶点(-b/2a,(4ac-b^2)/4a)顶点式y=a(x+b/2a)^2+(4ac-b^2)/4a。

  函数向左移动d(d>0)个单位,解析式为y=a(x+b/2a+d)^2+(4ac-b^2)/4a,向右就是减,函数向上移动d(d> 0)个单位,解析式为y=a(x+b/2a)^2+(4ac-b^2)/4a+d,向下就是减。当a>0时,开口向上,抛物线在y轴的上方(顶点在x轴上),并向上无限延伸;当a<0时,开口向下,抛物线在x轴下方(顶点在x轴上),并向下无限延伸。|a|越大,开口越小;|a|越小,开口越大。

  画抛物线y=ax2时,应先列表,再描点,最后连线。列表选取自变量x值时常以0为中心,选取便于计算、描点的整数值,描点连线时一定要用光滑曲线连接,并注意变化趋势。

meiwen首页 更多meiwen